Differences between Perfect Powers
نویسنده
چکیده
We apply the hypergeometric method of Thue and Siegel to prove, if a and b are positive integers, that the inequality 0 < |a − b | < 1 4 max{a, b} has at most a single solution in positive integers x and y. This essentially sharpens a classic result of LeVeque.
منابع مشابه
Large gaps between consecutive prime numbers containing perfect powers
For any positive integer k, we show that infinitely often, perfect k-th powers appear inside very long gaps between consecutive prime numbers, that is, gaps of size ck log p log2 p log4 p (log3 p) 2 , where p is the smaller of the two primes.
متن کاملFibonacci Numbers at Most One Away from a Perfect Power
The famous problem of determining all perfect powers in the Fibonacci sequence and the Lucas sequence has recently been resolved by three of the present authors. We sketch the proof of this result, and we apply it to show that the only Fibonacci numbers Fn such that Fn ± 1 is a perfect power are 0, 1, 2, 3, 5 and 8. The proof of the Fibonacci Perfect Powers Theorem involves very deep mathematic...
متن کاملOn Perfect Powers in Lucas Sequences
Let (un)n≥0 be the binary recurrent sequence of integers given by u0 = 0, u1 = 1 and un+2 = 2(un+1 + un). We show that the only positive perfect powers in this sequence are u1 = 1 and u4 = 16. We also discuss the problem of determining perfect powers in Lucas sequences in general.
متن کاملPerfect powers in arithmetic progression 1 PERFECT POWERS IN ARITHMETIC PROGRESSION. A NOTE ON THE INHOMOGENEOUS CASE
We show that the abc conjecture implies that the number of terms of any arithmetic progression consisting of almost perfect ”inhomogeneous” powers is bounded, moreover, if the exponents of the powers are all ≥ 4, then the number of such progressions is finite. We derive a similar statement unconditionally, provided that the exponents of the terms in the progression are bounded from above.
متن کاملPerfect Powers: Pillai’s Works and Their Developments
A perfect power is a positive integer of the form ax where a ≥ 1 and x ≥ 2 are rational integers. Subbayya Sivasankaranarayana Pillai wrote several papers on these numbers. In 1936 and again in 1945 he suggested that for any given k ≥ 1, the number of positive integer solutions (a, b, x, y), with x ≥ 2 and y ≥ 2, to the Diophantine equation ax − by = k is finite. This conjecture amounts to sayi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006